A supervised learning approach by machine learning and deep learning algorithms to predict type II DM risk
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
Egile Nagusiak: | Farabe, Abdullah Al, Sharika, Tarin Sultana, Raonak, Nahian, Ashraf, Ghalib |
---|---|
Beste egile batzuk: | Chakrabarty, Amitabha |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/14745 |
Antzeko izenburuak
-
The applications of data mining and machine learning in Bangladesh for disease pattern analysis and prediction
nork: Mahmud, Mahmudul Hasan
Argitaratua: (2021) -
Machine learning based analysis and prediction of crop yield and prices of Aman, Aus and Boro rice
nork: Bhattacharjee, Ruposri, et al.
Argitaratua: (2024) -
A feature selection approach to determine obesity using machine learning method
nork: Antor, Shahidul Alam, et al.
Argitaratua: (2021) -
A voice signal based gender prediction model using random forest classifier
nork: Ahmed, Saif, et al.
Argitaratua: (2018) -
A machine learning approach to analyze and predict rainfall in different regions of Bangladesh
nork: Rahee, Arnob, et al.
Argitaratua: (2021)