A convolutional neural network based model with improved activation function and optimizer for effective intrusion detection and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Egile Nagusiak: | Kabir, Solaiman, Sakib, Sadman, Hossain, Md. Akib, Islam, Safi |
---|---|
Beste egile batzuk: | Hossain, Muhammad Iqbal |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/14733 |
Antzeko izenburuak
-
Visualization of security vulnerabilities through intrusion detection system
nork: Ahmed, Ibrar, et al.
Argitaratua: (2010) -
Urban sound classification using convolutional Neural Network and long short term memory based on multiple features
nork: Das, Joy Krishan, et al.
Argitaratua: (2021) -
Performance analysis of deep learning algorithms for Intrusion Detection System(IDS) of IoT Security
nork: Fiha, Yeamin Jahan, et al.
Argitaratua: (2022) -
Music genre classification with convolutional neural network
nork: Chowdhury, Masud, et al.
Argitaratua: (2022) -
Malicious data classification in packet data network through hybrid meta deep learning
nork: Tapu, Sakib Uddin, et al.
Argitaratua: (2023)