Novel approaches to low leakage and area efficient VLSI Design
his thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2011.
Auteurs principaux: | , , , |
---|---|
Autres auteurs: | |
Format: | Thèse |
Langue: | English |
Publié: |
BRAC University
2011
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/1469 |
id |
10361-1469 |
---|---|
record_format |
dspace |
spelling |
10361-14692019-09-29T05:43:21Z Novel approaches to low leakage and area efficient VLSI Design Izma, Tajrian Barua, Parag Rahman, Md. Rejaur Sengupta, Prianka Islam, Md. Shafiqul Department of Electrical and Electronic Engineering, BRAC University Electrical and electronic engineering his thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2011. Cataloged from PDF version of thesis report. Includes bibliographical references (page 51-53). The development of digital integrated circuits is challenged by higher power consumption. The combination of higher clock speeds, greater functional integration, and smaller process geometries has contributed to significant growth in power density. Scaling improves transistor density and functionality on a chip. Scaling helps to increase speed and frequency of operation and hence higher performance. As voltages scale downward with the geometries threshold voltages must also decrease to gain the performance advantages of the new technology but leakage current increases exponentially. Thinner gate oxides have led to an increase in gate leakage current. Today leakage power has become an increasingly important issue in processor hardware and software design. With the main component of leakage, the sub-threshold current, exponentially increasing with decreasing device dimensions, leakage commands an ever increasing share in the processor power consumption. In 65 nm and below technologies, leakage accounts for 30-40% of processor power. According to the International Technology Roadmap for Semiconductors (ITRS) [1], leakage power dissipation may eventually dominate total power consumption as technology feature sizes shrink. While there are several process technology and circuit-level solutions to reduce leakage in processors, we propose novel approaches for reducing both leakage and dynamic power with minimum possible area and delay trade off. Tajrian Izma Parag Barua Md. Rejaur Rahman Prianka Sengupta B. Electrical and Electronic Engineering 2011-11-15T07:04:43Z 2011-11-15T07:04:43Z 2011 2011-08 Thesis ID 09221088 ID 09221082 ID 09221157 ID 09221092 http://hdl.handle.net/10361/1469 en BRAC University thesis are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 65 pages application/pdf BRAC University |
institution |
Brac University |
collection |
Institutional Repository |
language |
English |
topic |
Electrical and electronic engineering |
spellingShingle |
Electrical and electronic engineering Izma, Tajrian Barua, Parag Rahman, Md. Rejaur Sengupta, Prianka Novel approaches to low leakage and area efficient VLSI Design |
description |
his thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2011. |
author2 |
Islam, Md. Shafiqul |
author_facet |
Islam, Md. Shafiqul Izma, Tajrian Barua, Parag Rahman, Md. Rejaur Sengupta, Prianka |
format |
Thesis |
author |
Izma, Tajrian Barua, Parag Rahman, Md. Rejaur Sengupta, Prianka |
author_sort |
Izma, Tajrian |
title |
Novel approaches to low leakage and area efficient VLSI Design |
title_short |
Novel approaches to low leakage and area efficient VLSI Design |
title_full |
Novel approaches to low leakage and area efficient VLSI Design |
title_fullStr |
Novel approaches to low leakage and area efficient VLSI Design |
title_full_unstemmed |
Novel approaches to low leakage and area efficient VLSI Design |
title_sort |
novel approaches to low leakage and area efficient vlsi design |
publisher |
BRAC University |
publishDate |
2011 |
url |
http://hdl.handle.net/10361/1469 |
work_keys_str_mv |
AT izmatajrian novelapproachestolowleakageandareaefficientvlsidesign AT baruaparag novelapproachestolowleakageandareaefficientvlsidesign AT rahmanmdrejaur novelapproachestolowleakageandareaefficientvlsidesign AT senguptaprianka novelapproachestolowleakageandareaefficientvlsidesign |
_version_ |
1814308685879443456 |