Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Główni autorzy: | Farzana, Maisha, Any, Md. Jahid Hossain |
---|---|
Kolejni autorzy: | Parvez, Mohammad Zavid |
Format: | Praca dyplomowa |
Język: | en_US |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/14459 |
Podobne zapisy
-
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
od: Haque, Hossain MD. Hasibul, i wsp.
Wydane: (2024) -
Brain tumor segmentation from MRI images using convolutional neural networks
od: Khan, Mushfiqur Rahman
Wydane: (2024) -
Detecting brain tumor using deep neural networks from MRI images
od: Imamuzzaman, A.S.M., i wsp.
Wydane: (2021) -
Lossless segmentation of Brain Tumors from MRI images using 3D U-Net
od: Farha, Ramisa, i wsp.
Wydane: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
od: Bin Mushfiq, Rahil, i wsp.
Wydane: (2024)