Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Egile Nagusiak: | Farzana, Maisha, Any, Md. Jahid Hossain |
---|---|
Beste egile batzuk: | Parvez, Mohammad Zavid |
Formatua: | Thesis |
Hizkuntza: | en_US |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/14459 |
Antzeko izenburuak
-
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
nork: Haque, Hossain MD. Hasibul, et al.
Argitaratua: (2024) -
Brain tumor segmentation from MRI images using convolutional neural networks
nork: Khan, Mushfiqur Rahman
Argitaratua: (2024) -
Detecting brain tumor using deep neural networks from MRI images
nork: Imamuzzaman, A.S.M., et al.
Argitaratua: (2021) -
Lossless segmentation of Brain Tumors from MRI images using 3D U-Net
nork: Farha, Ramisa, et al.
Argitaratua: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
nork: Bin Mushfiq, Rahil, et al.
Argitaratua: (2024)