Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Asıl Yazarlar: | Farzana, Maisha, Any, Md. Jahid Hossain |
---|---|
Diğer Yazarlar: | Parvez, Mohammad Zavid |
Materyal Türü: | Tez |
Dil: | en_US |
Baskı/Yayın Bilgisi: |
Brac University
2021
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/14459 |
Benzer Materyaller
-
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
Yazar:: Haque, Hossain MD. Hasibul, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Brain tumor segmentation from MRI images using convolutional neural networks
Yazar:: Khan, Mushfiqur Rahman
Baskı/Yayın Bilgisi: (2024) -
Detecting brain tumor using deep neural networks from MRI images
Yazar:: Imamuzzaman, A.S.M., ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Lossless segmentation of Brain Tumors from MRI images using 3D U-Net
Yazar:: Farha, Ramisa, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
Yazar:: Bin Mushfiq, Rahil, ve diğerleri
Baskı/Yayın Bilgisi: (2024)