Comparison of different CNN architectures for brain tumor detection using fMRI
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Główni autorzy: | Mashiat, Afsara, Akhlaque, Reza Rifat, Fariha, Fahmeda Hasan, Patwary, Md Shawkat Hossain |
---|---|
Kolejni autorzy: | Parvez, Mohammad Zavid |
Format: | Praca dyplomowa |
Język: | en_US |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://dspace.bracu.ac.bd/xmlui/handle/10361/14456 |
Podobne zapisy
-
Brain image fMRI data classification and graphical representation of visual object
od: Tasneem, Nazifa Afroza, i wsp.
Wydane: (2019) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
od: Neehal, Ahmed Hasin, i wsp.
Wydane: (2020) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
od: Haque, Hossain MD. Hasibul, i wsp.
Wydane: (2024) -
Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
od: Tanvir, Farhan, i wsp.
Wydane: (2024) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
od: Shahriar, Farhan, i wsp.
Wydane: (2021)