Comparison of different CNN architectures for brain tumor detection using fMRI
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Autori principali: | Mashiat, Afsara, Akhlaque, Reza Rifat, Fariha, Fahmeda Hasan, Patwary, Md Shawkat Hossain |
---|---|
Altri autori: | Parvez, Mohammad Zavid |
Natura: | Tesi |
Lingua: | en_US |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://dspace.bracu.ac.bd/xmlui/handle/10361/14456 |
Documenti analoghi
-
Brain image fMRI data classification and graphical representation of visual object
di: Tasneem, Nazifa Afroza, et al.
Pubblicazione: (2019) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
di: Neehal, Ahmed Hasin, et al.
Pubblicazione: (2020) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
di: Haque, Hossain MD. Hasibul, et al.
Pubblicazione: (2024) -
Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
di: Tanvir, Farhan, et al.
Pubblicazione: (2024) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
di: Shahriar, Farhan, et al.
Pubblicazione: (2021)