Comparison of different CNN architectures for brain tumor detection using fMRI
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Egile Nagusiak: | Mashiat, Afsara, Akhlaque, Reza Rifat, Fariha, Fahmeda Hasan, Patwary, Md Shawkat Hossain |
---|---|
Beste egile batzuk: | Parvez, Mohammad Zavid |
Formatua: | Thesis |
Hizkuntza: | en_US |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://dspace.bracu.ac.bd/xmlui/handle/10361/14456 |
Antzeko izenburuak
-
Brain image fMRI data classification and graphical representation of visual object
nork: Tasneem, Nazifa Afroza, et al.
Argitaratua: (2019) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
nork: Neehal, Ahmed Hasin, et al.
Argitaratua: (2020) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
nork: Haque, Hossain MD. Hasibul, et al.
Argitaratua: (2024) -
Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
nork: Tanvir, Farhan, et al.
Argitaratua: (2024) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
nork: Shahriar, Farhan, et al.
Argitaratua: (2021)