Comparison of different CNN architectures for brain tumor detection using fMRI
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Autores principales: | Mashiat, Afsara, Akhlaque, Reza Rifat, Fariha, Fahmeda Hasan, Patwary, Md Shawkat Hossain |
---|---|
Otros Autores: | Parvez, Mohammad Zavid |
Formato: | Tesis |
Lenguaje: | en_US |
Publicado: |
Brac University
2021
|
Materias: | |
Acceso en línea: | http://dspace.bracu.ac.bd/xmlui/handle/10361/14456 |
Ejemplares similares
-
Brain image fMRI data classification and graphical representation of visual object
por: Tasneem, Nazifa Afroza, et al.
Publicado: (2019) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
por: Neehal, Ahmed Hasin, et al.
Publicado: (2020) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
por: Haque, Hossain MD. Hasibul, et al.
Publicado: (2024) -
Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
por: Tanvir, Farhan, et al.
Publicado: (2024) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
por: Shahriar, Farhan, et al.
Publicado: (2021)