A comparative study of deep learning methods for automating road condition characterization
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Huvudupphovsmän: | Ruhi, Zurana Mehrin, Sheetal, Farahatul Aziz, Prithu, Farisha Hossain |
---|---|
Övriga upphovsmän: | Arif, Hossain |
Materialtyp: | Lärdomsprov |
Språk: | en_US |
Publicerad: |
Brac University
2021
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/14359 |
Liknande verk
-
Damaged road detection using Image Processing and Deep Learning
av: Swadesh, Shimran Mahbub, et al.
Publicerad: (2022) -
Deep learning-based real-time pothole detection for avoiding road accident
av: Basher, Rafsan, et al.
Publicerad: (2022) -
Roads and resources : appropriate technology in road construction in developing countries : a study prepared for the International Labour Office within the framework of the World Employment Programme /
Publicerad: (1980) -
Automatic detection of defective rail anchors
av: Khan, Rubayat Ahmed, et al.
Publicerad: (2017) -
A deep learning based autonomous electric vehicle on unstructured road conditions
av: Adnan, Ashik, et al.
Publicerad: (2021)