A comparative study of deep learning methods for automating road condition characterization
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Auteurs principaux: | Ruhi, Zurana Mehrin, Sheetal, Farahatul Aziz, Prithu, Farisha Hossain |
---|---|
Autres auteurs: | Arif, Hossain |
Format: | Thèse |
Langue: | en_US |
Publié: |
Brac University
2021
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/14359 |
Documents similaires
-
Damaged road detection using Image Processing and Deep Learning
par: Swadesh, Shimran Mahbub, et autres
Publié: (2022) -
Deep learning-based real-time pothole detection for avoiding road accident
par: Basher, Rafsan, et autres
Publié: (2022) -
Roads and resources : appropriate technology in road construction in developing countries : a study prepared for the International Labour Office within the framework of the World Employment Programme /
Publié: (1980) -
Automatic detection of defective rail anchors
par: Khan, Rubayat Ahmed, et autres
Publié: (2017) -
A deep learning based autonomous electric vehicle on unstructured road conditions
par: Adnan, Ashik, et autres
Publié: (2021)