A comparative study of deep learning methods for automating road condition characterization
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Egile Nagusiak: | Ruhi, Zurana Mehrin, Sheetal, Farahatul Aziz, Prithu, Farisha Hossain |
---|---|
Beste egile batzuk: | Arif, Hossain |
Formatua: | Thesis |
Hizkuntza: | en_US |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/14359 |
Antzeko izenburuak
-
Damaged road detection using Image Processing and Deep Learning
nork: Swadesh, Shimran Mahbub, et al.
Argitaratua: (2022) -
Deep learning-based real-time pothole detection for avoiding road accident
nork: Basher, Rafsan, et al.
Argitaratua: (2022) -
Roads and resources : appropriate technology in road construction in developing countries : a study prepared for the International Labour Office within the framework of the World Employment Programme /
Argitaratua: (1980) -
Automatic detection of defective rail anchors
nork: Khan, Rubayat Ahmed, et al.
Argitaratua: (2017) -
A deep learning based autonomous electric vehicle on unstructured road conditions
nork: Adnan, Ashik, et al.
Argitaratua: (2021)