A comparative study of deep learning methods for automating road condition characterization
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2020.
Main Authors: | Ruhi, Zurana Mehrin, Sheetal, Farahatul Aziz, Prithu, Farisha Hossain |
---|---|
Andre forfattere: | Arif, Hossain |
Format: | Thesis |
Sprog: | en_US |
Udgivet: |
Brac University
2021
|
Fag: | |
Online adgang: | http://hdl.handle.net/10361/14359 |
Lignende værker
-
Damaged road detection using Image Processing and Deep Learning
af: Swadesh, Shimran Mahbub, et al.
Udgivet: (2022) -
Deep learning-based real-time pothole detection for avoiding road accident
af: Basher, Rafsan, et al.
Udgivet: (2022) -
Roads and resources : appropriate technology in road construction in developing countries : a study prepared for the International Labour Office within the framework of the World Employment Programme /
Udgivet: (1980) -
Automatic detection of defective rail anchors
af: Khan, Rubayat Ahmed, et al.
Udgivet: (2017) -
A deep learning based autonomous electric vehicle on unstructured road conditions
af: Adnan, Ashik, et al.
Udgivet: (2021)