Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2019.
Główni autorzy: | Neehal, Ahmed Hasin, Azam, Md. Nura, Islam, Md. Sazzadul, Hossain, Md. Ishrak |
---|---|
Kolejni autorzy: | Parvez, Mohammad Zavid |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2020
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/13884 |
Podobne zapisy
-
Comparison of different CNN architectures for brain tumor detection using fMRI
od: Mashiat, Afsara, i wsp.
Wydane: (2021) -
Brain image fMRI data classification and graphical representation of visual object
od: Tasneem, Nazifa Afroza, i wsp.
Wydane: (2019) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
od: Shahriar, Farhan, i wsp.
Wydane: (2021) -
Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
od: Tanvir, Farhan, i wsp.
Wydane: (2024) -
Early Schizophrenia Diagnosis with 3D Convolutional Neural Network
od: Ashraf, S.M. Nabil, i wsp.
Wydane: (2021)