Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
Hoofdauteurs: | Saquib, Muhammad Sadman, Ali, Mili Mohammad, Tazmim, Marisha, Ahmad, Faiyaaz |
---|---|
Andere auteurs: | Arif, Hossain |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2019
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/12295 |
Gelijkaardige items
-
A machine learning approach to predicting and mitigating traffic congestion
door: Faisal, Abu Fatah Mohammed, et al.
Gepubliceerd in: (2024) -
Reducing traffic congestion level of Dhaka city using policy based algorithm in SUMO
door: Islam, Khandker Mushfiqul, et al.
Gepubliceerd in: (2018) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
door: Mollah, Md Lokman Hossain
Gepubliceerd in: (2021) -
A novel approach to forecast traffic congestion using CMTF and machine learning
door: Chowdhury, Md. Mohiuddin, et al.
Gepubliceerd in: (2018) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
door: Ahmed, Ansar
Gepubliceerd in: (2017)