Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
主要な著者: | Saquib, Muhammad Sadman, Ali, Mili Mohammad, Tazmim, Marisha, Ahmad, Faiyaaz |
---|---|
その他の著者: | Arif, Hossain |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2019
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/12295 |
類似資料
-
A machine learning approach to predicting and mitigating traffic congestion
著者:: Faisal, Abu Fatah Mohammed, 等
出版事項: (2024) -
Reducing traffic congestion level of Dhaka city using policy based algorithm in SUMO
著者:: Islam, Khandker Mushfiqul, 等
出版事項: (2018) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
著者:: Mollah, Md Lokman Hossain
出版事項: (2021) -
A novel approach to forecast traffic congestion using CMTF and machine learning
著者:: Chowdhury, Md. Mohiuddin, 等
出版事項: (2018) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
著者:: Ahmed, Ansar
出版事項: (2017)