Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
Auteurs principaux: | Saquib, Muhammad Sadman, Ali, Mili Mohammad, Tazmim, Marisha, Ahmad, Faiyaaz |
---|---|
Autres auteurs: | Arif, Hossain |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2019
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/12295 |
Documents similaires
-
A machine learning approach to predicting and mitigating traffic congestion
par: Faisal, Abu Fatah Mohammed, et autres
Publié: (2024) -
Reducing traffic congestion level of Dhaka city using policy based algorithm in SUMO
par: Islam, Khandker Mushfiqul, et autres
Publié: (2018) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
par: Mollah, Md Lokman Hossain
Publié: (2021) -
A novel approach to forecast traffic congestion using CMTF and machine learning
par: Chowdhury, Md. Mohiuddin, et autres
Publié: (2018) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
par: Ahmed, Ansar
Publié: (2017)