Chronic kidney disease detection using ensemble classi ers and feature set reduction
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
Egile Nagusiak: | Shawan, Naveed Rahman, Mehrab, Syed Samiul Alam, Ahmed, Fardeen, Hasmi, Mohammad Sharatul |
---|---|
Beste egile batzuk: | Arif, Hossain |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
BRAC University
2019
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/12255 |
Antzeko izenburuak
-
Determining fatal heart failure risks in patients diagnosed with chronic kidney disease: a machine learning approach
nork: Haque, Adiba, et al.
Argitaratua: (2022) -
Performance analysis of machine learning classi ers for detecting PE malware
nork: Azmee, ABM.Adnan, et al.
Argitaratua: (2020) -
Developing a machine learning based prognostic model and a supporting web-based application for predicting the possibility of early diabetes and diabetic kidney disease
nork: Amin, M.M. Shahriar, et al.
Argitaratua: (2021) -
Early detection of chronic kidney disease using machine learning
nork: Abrar, Tahmid, et al.
Argitaratua: (2019) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
nork: Hasan, Anita, et al.
Argitaratua: (2022)