A novel approach to forecast traffic congestion using CMTF and machine learning
This thesis is submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2018.
Egile Nagusiak: | Chowdhury, Md. Mohiuddin, Hasan, Mahmudul, Safait, Saimoom |
---|---|
Beste egile batzuk: | Uddin, Jia |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
BRAC University
2018
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/10121 |
Antzeko izenburuak
-
A machine learning approach to predicting and mitigating traffic congestion
nork: Faisal, Abu Fatah Mohammed, et al.
Argitaratua: (2024) -
Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
nork: Saquib, Muhammad Sadman, et al.
Argitaratua: (2019) -
Travel time prediction using machine learning and weather impact on traffic conditions
nork: Deb, Bilash, et al.
Argitaratua: (2018) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
nork: Ahmed, Ansar
Argitaratua: (2017) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
nork: Mollah, Md Lokman Hossain
Argitaratua: (2021)